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Project Objective 
§  To enable integration of hundreds of GWs of solar generation to the 

U.S. electric power system, this project will develop a unique PV 
inverter design that combines high-voltage Silicon Carbide (SiC) with 
revolutionary concepts such as additive manufacturing and multi-
objective magnetic design optimization 

§  The final deliverables from the project will include:  
a)  High power density (>100W/in3), high efficiency (>98%) power block 

and 50 kW prototype inverter  

b)  Additive manufacturing techniques for power block and heat sink  

c)  Magnetic design optimization tool 

d)  A versatile controller 

e)  Standard HIL inverter testing techniques  

f)  Cost and reliability analysis of SiC based PV inverter 
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SunShot PE Target Metrics 
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Project Technical Approach 
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Economies of Scale 
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AM-based Power Block with 1700V SiC 
MOSFETs and Diodes 
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§  The switching performance of the SiC module is evaluated through a high 
voltage double pulse test setup 

8 

Power Block – Testing   

SiC power module Universal gate driver 

Overcurrent protection Load inductor 

§  Power stage with high voltage (>2000V 
DC) and current capability (>20A RMS) 

§  Embedded solid-state circuit breaker for 
fast and reliable overcurrent protection 

§  Preliminary test: 700V dc bus voltage and 
55A load current 

§  Excellent turn-on switching behavior; 
moderate turn-off ringing due to non-
optimized external power loop connection 

Time scale: (2 µs/div) 

Drain-Source Voltage (400 V/div) 

Gate Voltage (20 V/div) 

Drain-Source Current (30 A/div) 

turn off turn on 

Initial Test Results for SiC Module 



Inductor Design Using Multi-Objective 
Optimization 

9 

Multi-Objective Design Methodology 
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Example: AC Inductor Design 

10 
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Controller 

11 

NI 9607�

NI 9683�
Controller�

ORNL Gate 
Driver Board�

Power 
Module�

Interface 
Board�

Control Algorithms and Simulation Validation 

4-Quadrant Operation Grid-tied Current Control 

Advanced Functions                          
(VVAR, FWATT, Ride through, AI etc.) 

SBRIO: Xilinx Zynq-7000, 667 MHz 
dual-core ARM Cortex-A9 
processor, an Artix-7 FPGA, and a 
mezzanine card connector  

Controller Hardware and 
Interface 



Controller Hardware-in-the-Loop (CHIL) 
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Component Layout (Alpha-prototype) 
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Ø  Components are grouped into three thermal subsystems : 
1: DC capacitors, DC current and voltage sensors 
II: power block, LCL filters 
III: Control board, AC current and voltage sensors 

Ø  Subsystem II has largest heat loads and therefore becomes the main focus in thermal design 
Ø  The inverter designed volume is 1378 in3, yielding a power density of approximately 36 W/in3 
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Air Temperature Distribution 

Evaluation of  Thermal Design 
Sample Mesh 

•  Heat exchanger is modeled 
as a porous media within 
ANSYS 

•  Parameters are defined to 
match the desired pressure 
drop versus flow of the 
specified heat exchanger 

Preliminary CFD Simulations 



AMPVI Design Process Flow 

15 

Inverter Design

ControllerMagnetics Power Block

AMPVI

Power 
Hardware

Switch Package and Power 
Module

Common 
Mode Filter

AC Filter 
Design

Inverter Validation

Harmonics, 
Losses, P, V, I, PD

Harmonics, η, 
PD, P, V, I

η, P, Harmonics, 
PD

Grid support 
functions, 

Interoperable, PD

ΔIdc

fs

fs

Thermal limits    Mechanical data

Thermal limits, 
Mechanical data η, PD, Operational limit

Thermal limits, Mechanical data

Validation feedback Validation feedback

Validation 
feedback

Control 
Algorithm

 Testing & ValidationTesting & Validation CHIL Validation

Verification

System  PHIL 
Validation (in BP 3)

System level design inputs
Inter-subsystem dependency
Subsystem design steps
System validation feedback 
to sub-systems 

Power                 
Testing

Control 
Hardware



Stakeholder Engagement 
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§  Technology advisory panel (TAP) 
–  Getting industry feedback and building industry interest in developed 

technologies for future commercialization 

–  TAP was formed and currently have four members Solectria, Unified Power, 
National Instruments, Semikron USA 

• Semikron	
  • NI	
  

• Rohm?	
  • Solectria	
  
• Unified	
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§  1-hour call in every 3 months 

§  No travel requirement  

§  Typically be at high level without 
discussing any detailed technology or 
IPs 

§  May need to sign a multi-party NDA 
if detailed technologies discussed 
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